Package: SCGLR 3.1.9000

Guillaume Cornu

SCGLR: Supervised Component Generalized Linear Regression

An extension of the Fisher Scoring Algorithm to combine PLS regression with GLM estimation in the multivariate context. Covariates can also be grouped in themes.

Authors:Guillaume Cornu [aut, cre], Frederic Mortier [aut], Catherine Trottier [aut], Xavier Bry [aut], Jocelyn Chauvet [aut], Sylvie Gourlet-Fleury [dtc], Claude Garcia [dtc], GAMBAS [fnd]

SCGLR_3.1.9000.tar.gz
SCGLR_3.1.9000.zip(r-4.5)SCGLR_3.1.9000.zip(r-4.4)SCGLR_3.1.9000.zip(r-4.3)
SCGLR_3.1.9000.tgz(r-4.5-any)SCGLR_3.1.9000.tgz(r-4.4-any)SCGLR_3.1.9000.tgz(r-4.3-any)
SCGLR_3.1.9000.tar.gz(r-4.5-noble)SCGLR_3.1.9000.tar.gz(r-4.4-noble)
SCGLR_3.1.9000.tgz(r-4.4-emscripten)SCGLR_3.1.9000.tgz(r-4.3-emscripten)
SCGLR.pdf |SCGLR.html
SCGLR/json (API)
NEWS

# Install 'SCGLR' in R:
install.packages('SCGLR', repos = c('https://scnext.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/scnext/scglr/issues

Pkgdown site:https://scnext.github.io

Datasets:
  • dataGen - Sample dataset of abundance of genera in tropical moist forest
  • genus - Sample dataset of abundance of genera in tropical moist forest
  • genus2 - Sample dataset of abundance of genera in tropical moist forest

On CRAN:

Conda:

partial-least-squares-regression

4.43 score 2 stars 67 scripts 155 downloads 11 exports 37 dependencies

Last updated 1 hours agofrom:01d669f062. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-winOKMar 27 2025
R-4.5-macOKMar 27 2025
R-4.5-linuxOKMar 27 2025
R-4.4-winOKMar 27 2025
R-4.4-macOKMar 27 2025
R-4.4-linuxOKMar 27 2025
R-4.3-winOKMar 27 2025
R-4.3-macOKMar 27 2025

Exports:critConvergenceinfoCriterionkCompRandmethodSRmultivariateFormulamultivariateGlm.fitmultivariatePredictGlmscglrscglrCrossValscglrThemescglrThemeBackward

Dependencies:ade4clicolorspacefansifarverFormulaggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpixmappkgconfigplsplyrpROCR6RColorBrewerRcppRcppArmadillorlangscalessptibbleutf8vctrsviridisLitewithr